Migratory Birds Use Head Scans to Detect the Direction of the Earth's Magnetic Field

نویسندگان

  • Henrik Mouritsen
  • Gesa Feenders
  • Miriam Liedvogel
  • Wiebke Kropp
چکیده

Night-migratory songbirds are known to use a magnetic compass , but how do they detect the reference direction provided by the geomagnetic field, and where is the sensory organ located? The most prominent characteristic of geomagnetic sensory input, whether based on visual patterns or magnetite-mediated forces , is the predicted symmetry around the north-south or east-west magnetic axis. Here, we show that caged migratory garden warblers perform head-scanning behavior well suited to detect this magnetic symmetry plane. In the natural geomagnetic field, birds move toward their migratory direction after head scanning. In a zero-magnetic field , where no symmetry plane exists, the birds almost triple their head-scanning frequency, and the movement direction after a head scan becomes random. Thus, the magnetic sensory organ is located in the bird's head, and head scans are used to locate the reference direction provided by the geomagnetic field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Migratory blackcaps tested in Emlen funnels can orient at 85 degrees but not at 88 degrees magnetic inclination.

Migratory birds are known to use the Earth's magnetic field as an orientation cue on their tremendous journeys between their breeding and overwintering grounds. The magnetic compass of migratory birds relies on the magnetic field's inclination, i.e. the angle between the magnetic field lines and the Earth's surface. As a consequence, vertical or horizontal field lines corresponding to 0 or 90 d...

متن کامل

Differential effects of magnetic pulses on the orientation of naturally migrating birds.

In migratory passerine birds, strong magnetic pulses are thought to be diagnostic of the remagnetization of iron minerals in a putative sensory system contained in the beak. Previous evidence suggests that while such a magnetic pulse affects the orientation of migratory birds in orientation cages, no effect was present when pulse-treated birds were tested in natural migration. Here we show that...

متن کامل

Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation.

Migratory birds can use a magnetic compass for orientation during their migratory journeys covering thousands of kilometers. But how do they sense the reference direction provided by the Earth's magnetic field? Behavioral evidence and theoretical considerations have suggested that radical-pair processes in differently oriented, light-sensitive molecules of the retina could enable migratory bird...

متن کامل

The quantum needle of the avian magnetic compass.

Migratory birds have a light-dependent magnetic compass, the mechanism of which is thought to involve radical pairs formed photochemically in cryptochrome proteins in the retina. Theoretical descriptions of this compass have thus far been unable to account for the high precision with which birds are able to detect the direction of the Earth's magnetic field. Here we use coherent spin dynamics s...

متن کامل

A strong magnetic pulse affects the precision of departure direction of naturally migrating adult but not juvenile birds.

The mechanisms by which migratory birds achieve their often spectacular navigational performance are still largely unclear, but perception of cues from the Earth's magnetic field is thought to play a role. Birds that possess migratory experience can use map-based navigation, which may involve a receptor that uses ferrimagnetic material for detecting gradients in the magnetic field. Such a mecha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2004